AT**Kearney**

3D Printing: A Manufacturing Revolution

The question is not if but when companies need to consider 3D printing. A.T. Kearney is helping forward-thinking players overcome the challenges and take advantage of powerful opportunities in this next generation of manufacturing. "Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. The revolution is not additive versus subtractive manufacturing; it is the ability to turn data into things and things into data."

 Neil Gershenfeld, director of the Center for Bits and Atoms at the Massachusetts Institute of Technology

Is 3D Printing the Next Industrial Revolution?

Also known as additive manufacturing, 3D printing (3DP) creates physical products from a digital design file by joining or forming input substrate materials using a layerupon-layer printing approach. There are seven major printing technologies today.

What is 3D printing?

Source: A.T. Kearney analysis

Each has a different way of processing input materials into a final product. Combined with advanced scanning, 3DP technologies allow physical products to be converted into digital design files and vice versa. Going forward, 3DP has the power to transform the digital-physical interface for product design, development, and manufacturing.

3DP Creates Breakthrough Value in Product Design and Production

Across five dimensions, 3DP offers distinct benefits that traditional manufacturing cannot deliver:

Mass customization. The ability to create custom-built designs opens doors to unlimited possibilities.

New capabilities. Complex products can be mass produced without high fixed-cost capital investments and at a lower variable cost than traditional methods.

Lead time and speed. Shorter design, process, and production cycles get products to market faster.

Supply chain simplification. Production is closer to the point of demand with much less inventory.

Waste reduction. With unused powder being reused for successive printing, much less material is wasted.

3D printing offers distinct benefits that traditional manufacturing cannot deliver.

Although traditional manufacturing will have cost advantages in large-scale production settings for the foreseeable future, 3DP's role will grow in settings where these five dimensions are crucial for success, such as prototyping (lead time and speed), personalized medical implants (mass customization), and jet components that require a complex assembly and have high fly-to-buy ratios (new capabilities and waste reduction).

3DP Creates New Value Chains

In addition to transforming how products are designed and made, 3DP will disrupt value chains. Consider this retail scenario, where 3DP transforms how a consumer shops, co-creates, and buys shoes.

3D printing allows shoppers to create custom-made shoes

Source: A.T. Kearney analysis

Opportunities

By 2020, 3DP is expected to be a \$17 billion market.

The use of 3D printing is expected to grow

Global 3D industry market for hardware, supplies, and services \$ billion

3D printing market

Sector	2014	Five-year CAGR
Aerospace (including defense)	\$0.8 billion 18%	15–20%
Industrial (including construction)	\$0.8 billion 18%	15-20%
Healthcare	\$0.7 billion 15-17%	20-25%
Automotive	\$0.5 billion 12%	15–20%
Jewelry	\$0.5 billion 12%	25-30%
Energy	Less than 5%	30-35%
Other (many sectors)	Less than 20%	20-25%
Total	\$4.5 billion	25%

Sources: Wohlers Report, SmarTech Markets, Credit Suisse; A.T. Kearney analysis

Already, 3DP is prevalent in prototyping and small-batch production.

Several industries have embraced 3D printing

	Current applications	Imminent applications	Ideal applications
Automotive	 Specialized components for engine production Innovative designs, such as concept car chassis 	 New products with prior design for manufacture limits Lightweight structures, such as chassis 	 Low to medium volume High value-to-weight ratio High fly-to-buy and material waste ratio Complex geometry
Aerospace	 Production-approved components, such as fuel nozzles Prototype jet engine parts 	 High-performance parts, such as sensor housings Full-scale manufacture of semi-standard components 	 Complex multi-part assembly under traditional manufacturing Need for form-function-fit customization
Medical	Orthodontic implants for hips and spinesSurgical guides	StentsPersonalized prosthetics	
Consumer	Custom jewelryHigh-performance sporting goods	 Apparel production Fashion accessories production	

Source: A.T. Kearney analysis

Challenges

Hardware could be five to seven years away from achieving the technical and cost requirements needed to go beyond its current prototyping role into supporting production across broad, multi-material categories.

	Throughput	Number of materials	Assembly complexity	Precision tolerance
Cars	Hundreds per hour (needs a volume- based processing breakthrough)	More than 100	Complex assembly, safety, and functional testing	+/- 0.05 m
Apple watches	Thousands per hour (needs a surface- based printing breakthrough)	More than 50	Complex assembly, safety, and functional testing	+/- 0.000
Cosmetics		More than 15	Complex functional testing	5 ppm
Helmets		More than 10	Complex assembly and safety testing	+/- 0.001
Cameras	Hundreds per hour	More than 10	Complex assembly and functional testing	+/- 0.001
Biomedical device kits	10 to hundreds per hour	More than five	Simple assembly and flow testing	+/- 0.025
Toys	10 to hundreds per hour	One to three	Minimal assembly	+/- 2 mm
iPhone cases	Thousands per hour	One	None	None

Hardware must improve for 3D printing to succeed with complex items

Note: mm is millimeters; ppm is parts per million. Source: A.T. Kearney analysis New software platforms will be vital to support 3DP applications.

The 3D printing software ecosystem

Scanning and digitization app	Online database app	Mass customize app	Printer center	Intellectual property management and payment system	3D data and records management
 Rapid image- to-design matching High-perfor- mance scanning embedded in high-quality scanners Accurate and easy to use 	 Single-source repository of all product and component design templates ("the iTunes of design") Integration with original equipment manufacturers and crowd-sourced designers 	 Instant and flexible design customization Visual dashboard with final price and sustainability information Integration with medical and user guide advice app 	 Low-cost, high- throughput, high- quality production of 3D printed products Centralized factories, local printers, or storefronts 	 Bitcoin and design credit payment options Segmented licensing and royalties Last-mile fulfilment 	 3D services subscribers and providers database Secure information processing and transaction Records manage- ment and web services

Source: A.T. Kearney analysis

In both education and design capability, 3D design thinking is preventing mass adoption by companies and consumers.

Better education and design capabilities could give 3D printing a boost

Note: DIY is do it yourself. Source: A.T. Kearney analysis "With 3D printing, complexity is free. The printer doesn't care if it makes the most rudimentary shape or the most complex shape, and that is completely turning design and manufacturing on its head as we know it."

I A DE RECEITE A DE

 Avi Reichental, President & CEO, 3D Systems

Planning for the Future

The question is not if but when companies need to consider 3DP in their strategic planning. Forward-thinking players will need to sense and anticipate the future and create an adaptive response by answering five questions:

- How will 3D printing shape the end-to-end value chain in my sector?
- How robust is my firm's five- to 10-year value chain strategy against 3D disruptions?
- What are the most relevant 3D disruption scenarios?
- What are the leading indicators and trigger points for anticipating 3D disruption?
- What are the immediate action items to future-proof against 3D disruption?

A.T. Kearney and 3D Printing

We collaborate with leading companies in the 3D printing ecosystem, including hardware OEMs, software platform companies, academics and researchers, and specialized marketing research firms, to help organizations understand and capitalize on 3DP opportunities.

We help our clients embrace opportunities by creating scenarios and future-proofing for 3DP disruptions in the value chain.

Scenarios and future-proofing help our clients prepare for 3D printing

Note: D represents various levels of disruption drivers. Source: A.T. Kearney analysis

Our cost modeling compares 3DP and traditional manufacturing. We help answer three vital questions:

- At what point is 3DP cheaper than traditional manufacturing?
- How might the value chain get realigned?
- What is the impact of extreme demand variability?

Break-even comparison: traditional manufacturing vs. 3DP

Should-cost analysis by materials, functional performance, and structural characteristics

¹Sensitivity analysis of underlying cost drivers. Broadly speaking, sensitivity refers to a measure of how far altering an input will vary the output. ² "Buy-to-fly ratio" is an aerospace term that refers to the ratio of the weight of the raw material used for a component to the weight of the component itself.

A.T. Kearney's 3D Printing Team

Sean Monahan, partner, New York sean.monahan@atkearney.com

Jeff Staub, consultant, Melbourne jeff.staub@atkearney.com

Adam Ginsburg, consultant, Melbourne adam.ginsburg@atkearney.com

Michael Hu, principal, Chicago michael.hu@atkearney.com

Adam Detwiler, consultant, Melbourne adam.detwiler@atkearney.com

Kirit Rosario, consultant, Chicago kirit.rosario@atkearney.com

Farhan Qureshi, associate, Washington, D.C. farhan.qureshi@atkearney.com

AT**Kearney**

A.T. Kearney is a leading global management consulting firm with offices in more than 40 countries. Since 1926, we have been trusted advisors to the world's foremost organizations. A.T. Kearney is a partner-owned firm, committed to helping clients achieve immediate impact and growing advantage on their most mission-critical issues. For more information, visit www.atkearney.com.

Americas	Atlanta	Detroit	San Francisco
	Bogotá	Houston	São Paulo
	Calgary	Mexico City	Toronto
	Chicago	New York	Washington, D.C.
	Dallas	Palo Alto	
Asia Pacific	Bangkok	Melbourne	Singapore
	Beijing	Mumbai	Sydney
	Hong Kong	New Delhi	Taipei
	Jakarta	Seoul	Tokyo
	Kuala Lumpur	Shanghai	
Europe	Amsterdam	Istanbul	Oslo
	Berlin	Kiev	Paris
	Brussels	Lisbon	Prague
	Bucharest	Ljubljana	Rome
	Budapest	London	Stockholm
	Copenhagen	Madrid	Stuttgart
	Düsseldorf	Milan	Vienna
	Frankfurt	Moscow	Warsaw
	Helsinki	Munich	Zurich
Middle East	Abu Dhabi	Dubai	Manama
and Africa	Doha	Johannesburg	Riyadh

For more information, permission to reprint or translate this work, and all other correspondence, please email: insight@atkearney.com.

The signature of our namesake and founder, Andrew Thomas Kearney, on the cover of this document represents our pledge to live the values he instilled in our firm and uphold his commitment to ensuring "essential rightness" in all that we do.

A.T. Kearney Korea LLC is a separate and independent legal entity operating under the A.T. Kearney name in Korea.

A.T. Kearney operates in India as A.T. Kearney Limited (Branch Office), a branch office of A.T. Kearney Limited,

a company organized under the laws of England and Wales.

 \circledast 2015, A.T. Kearney, Inc. All rights reserved.